УДК-004.94

НОСИМЫЕ ЦИФРОВЫЕ ТЕХНОЛОГИИ И ИХ ВЛИЯНИЕ НА ЧЕЛОВЕКА

Дурдыев Акмырад Гурбанович

Преподаватель, Туркменский институт государственной пограничной службы г. Ашхабад Туркменистан

Аннасапаров Гуванч Гайыпгелдиевич

Преподаватель, института Телекоммуникаций и информатики Туркменистана г. Ашхабад Туркменистан

Аннотация

В статье рассматривается феномен носимых цифровых технологий как нового этапа взаимодействия человека и техники. Проведён анализ технической эволюции носимых устройств, их функциональных возможностей, а также социальных и физиологических эффектов, возникающих при их повседневном использовании. Особое внимание уделено вопросам цифрового контроля, биометрического мониторинга, этических рисков и трансформации границ между телом и информационной средой. Показано, что носимые технологии формируют новую «сенсорную экосистему» человека, в которой тело становится интерфейсом цифрового взаимодействия.

Ключевые слова: носимые технологии, биометрия, цифровизация, интерфейсы, здоровье, когнитивная нагрузка, этика технологий, киберчеловеческая интеграция.

Введение

Носимые цифровые технологии (wearable technologies) стали одной из наиболее динамично развивающихся сфер современной цифровой индустрии. Их распространение сопровождает повседневную жизнь человека — от фитнесбраслетов и «умных» часов до медицинских сенсоров, встроенных в одежду, и нейроинтерфейсов, регистрирующих активность мозга.

Эти устройства не только измеряют физиологические параметры, но и влияют на образ жизни, мотивацию, психическое состояние и социальное поведение. Человек всё чаще оказывается в ситуации постоянного цифрового самоконтроля, где данные о его теле становятся элементом цифровой инфраструктуры.

Цель статьи — рассмотреть носимые технологии как многоаспектный феномен, соединяющий инженерные, биомедицинские, социальные и философские измерения, а также выявить их влияние на человека как биопсихосоциальное существо.

Эволюция носимых технологий

Понятие «носимые технологии» охватывает широкий спектр устройств, которые человек может постоянно носить на теле, интегрируя их в повседневную деятельность.

Истоки этих технологий можно проследить в военной и медицинской сфере середины XX века, где впервые применялись датчики для мониторинга сердечного ритма и дыхания. С началом XXI века развитие микропроцессоров, беспроводных сетей и сенсорных систем позволило создать компактные устройства, обеспечивающие постоянный сбор и анализ данных.

Современные носимые технологии включают:

- умные часы и браслеты (контроль пульса, сна, активности);
- умную одежду (датчики температуры, давления, потоотделения);
- нейроинтерфейсы (регистрация ЭЭГ и когнитивных состояний);
- имплантируемые микрочипы (идентификация и медицинский мониторинг);
- **AR-очки и аудиоинтерфейсы** (расширение сенсорных возможностей).

Техническая тенденция последних лет заключается в постепенном переходе от отдельных устройств к **интегрированным экосистемам** — когда смартфон, браслет, гарнитура и одежда образуют единую систему наблюдения и анализа состояния организма.

Биометрический контроль и цифровое тело

Основная функция носимых технологий — сбор и интерпретация биометрических данных. Современные сенсоры способны фиксировать десятки физиологических параметров: частоту сердечных сокращений, насыщение крови кислородом, уровень стресса, активность мозга, температуру кожи, частоту дыхания и даже эмоциональные реакции.

Этот процесс формирует концепцию **«цифрового тела» (digital body)** — совокупности данных, которые отражают биологическое состояние человека в реальном времени.

Такая форма самонаблюдения способствует повышению осознанности в отношении здоровья, но одновременно создаёт новые формы зависимости от цифрового контроля. Человек начинает воспринимать своё тело через числовые показатели — шаги, калории, фазы сна, ритмы сердца.

Возникает феномен **«технологического самосознания»**, когда идентичность и самооценка связываются с данными, предоставляемыми устройством. Это приводит к изменению внутренней мотивации: физическая активность или отдых становятся не просто выбором, а реакцией на цифровую обратную связь.

Влияние на физиологические и когнитивные процессы

Регулярное использование носимых технологий оказывает комплексное воздействие на физиологию и психику человека.

С положительной стороны, постоянный мониторинг позволяет раннее выявление заболеваний, контроль артериального давления, оптимизацию режима сна и питания. Современные медицинские устройства уже способны предупреждать о приступах аритмии, гипоксии или гипергликемии, что спасает жизни миллионов людей.

Однако существует и обратный эффект — **повышенная когнитивная нагрузка и цифровое утомление**. Постоянное получение уведомлений, анализ метрик и необходимость их интерпретации вызывают состояние «информационного напряжения».

Исследования Кембриджского университета (2023) показали, что при постоянном использовании фитнес-трекеров у 42% пользователей развивается лёгкая форма тревожности, связанная с отклонениями показателей от нормы. Это явление получило название «синдрома цифрового несоответствия» — когда человек начинает ощущать тревогу, если его тело «работает» не по данным устройства.

Кроме того, частое использование устройств с экраном и уведомлениями снижает концентрацию внимания, вызывает сенсорную перегрузку и фрагментацию когнитивных процессов.

Социальные аспекты носимых технологий

Носимые устройства меняют социальную структуру коммуникаций. С одной стороны, они способствуют формированию сообществ, объединённых общими интересами в области здоровья, фитнеса или продуктивности. С другой стороны, возникает новая форма социального контроля — «цифровая прозрачность», когда личные данные становятся элементом социальной оценки.

Современные приложения позволяют сравнивать активность пользователей, формируя рейтинги и «соревновательную культуру». Это усиливает мотивацию, но может вызывать стресс, чувство несоответствия и зависимость от внешней оценки.

В корпоративной среде некоторые компании внедряют системы мониторинга активности сотрудников для повышения производительности. Это вызывает серьёзные этические вопросы, связанные с границами частной жизни и права на «биологическую автономию».

Медицинские и нейротехнологические перспективы

Особое значение носимые технологии приобрели в медицине и нейронауке.

Современные устройства позволяют проводить неинвазивный мониторинг пациентов с хроническими заболеваниями, отслеживая жизненные показатели в реальном времени. Это способствует переходу от реактивной к превентивной медицине, где лечение заменяется постоянным контролем и прогнозированием.

В нейротехнологиях активно развиваются мозго-компьютерные интерфейсы (ВСІ), которые позволяют управлять цифровыми системами с помощью электрической активности мозга. Уже существуют прототипы гарнитур, способных определять уровень концентрации, усталости или эмоционального состояния пользователя.

В будущем подобные интерфейсы могут использоваться для восстановления двигательных функций после инсульта, контроля сна или управления протезами.

Этика и философия цифрового тела

Расширение носимых технологий ставит перед обществом ряд философских и этических проблем.

Главный вопрос заключается в том, где проходит граница между человеком и машиной. Постоянное ношение сенсоров, измеряющих биологические процессы, создаёт ситуацию частичного «растворения» личности в цифровом контуре.

Человек становится не только пользователем технологий, но и их частью. Его тело — источник данных, которые анализируются, интерпретируются и используются внешними системами. Это вызывает вопросы: кому принадлежат эти данные? кто имеет право их использовать?

Согласно докладу ЮНЕСКО (2024), проблема приватности и биометрической безопасности является одной из ключевых угроз цифрового века. Необходима международная правовая база, регулирующая хранение и обработку биологических данных.

С философской точки зрения, носимые технологии создают новую форму антропологического опыта — **«расширенное тело»** (extended body), где границы человеческого восприятия и контроля выходят за пределы органического организма.

Перспективы и риски технологической интеграции

В ближайшие десятилетия развитие носимых цифровых технологий будет определяться двумя ключевыми тенденциями — углублением технологической миниатюризации и расширением когнитивной интеграции человека и машины. Эти процессы происходят одновременно в инженерном, медицинском и социокультурном измерении, формируя новую фазу технологической эволюции, в которой тело становится активным элементом цифровой экосистемы.

Современные разработки направлены на создание устройств, которые не просто собирают данные, а способны анализировать и интерпретировать их в режиме реального времени с использованием искусственного интеллекта. Переход от пассивного мониторинга к активной адаптивной технологии (adaptive technology) означает, что система начинает самостоятельно регулировать параметры функционирования организма: например, корректировать уровень физической нагрузки, контролировать качество сна, отслеживать уровень глюкозы или изменять температуру одежды в зависимости от состояния пользователя.

Одним из наиболее перспективных направлений становится развитие **умной одежды** (smart textiles) — тканей, снабжённых сенсорными волокнами и микроэлектронными компонентами. Такая одежда способна измерять частоту сердечных сокращений, уровень влажности кожи, концентрацию кислорода, а также передавать данные в медицинские и аналитические центры. В сочетании с телемедициной и системами искусственного интеллекта подобные решения открывают новую эпоху персонализированной медицины, когда контроль состояния здоровья осуществляется непрерывно и бесконтактно.

Следующим этапом технологической интеграции станет распространение биосенсорных линз, которые будут не только корректировать зрение, но и измерять биохимические показатели — например, уровень глюкозы или электролитов в слезной жидкости. Такие устройства уже тестируются в Японии, Южной Корее и США и рассматриваются как альтернатива традиционным инвазивным методам анализа.

Имплантируемые микрочипы и гибридные бионические элементы постепенно перестают быть предметом научной фантастики. Их применение выходит за рамки медицинских целей — они используются для идентификации, оплаты, доступа к системам безопасности и даже для хранения цифровых сертификатов личности. Согласно отчёту Всемирного экономического форума (2024), к 2035 году до 12% населения экономически развитых стран будут использовать хотя бы одно имплантируемое цифровое устройство.

Важным направлением остаётся **интеграция носимых технологий с системами искусственного интеллекта**. ИИ выполняет функции анализа больших массивов данных, прогнозирования физиологических изменений и адаптации поведения устройства под индивидуальные параметры пользователя.

Например, интеллектуальные алгоритмы способны распознавать ранние признаки усталости, эмоционального выгорания или нарушения сна и давать рекомендации в реальном времени.

Наряду с этим активно развивается сенсорная инфраструктура городов, формирующая концепцию «умного города» (Smart City). В этом контексте носимые устройства становятся элементами распределённой сети, передающей информацию о перемещении людей, экологическом состоянии среды, транспортных потоках и даже уровне стресса в населении. Таким образом, индивидуальные технологии трансформируются в социальные, а личные данные становятся частью коллективного цифрового пространства.

Однако рост технологической интеграции сопровождается усилением рисков и этических вызовов. Наиболее очевидным является риск утечки персональных обладают биометрических данных, которые высокой традиционной чувствительности. отличие OT цифровой информации, биометрические параметры невозможно изменить или «сбросить». Потеря ЭТИМИ данными может привести К серьёзным конфиденциальности, дискриминации и манипуляции поведением человека.

Кроме того, нарастает феномен **психологической зависимости от цифрового мониторинга**. Пользователь всё чаще воспринимает своё физическое и эмоциональное состояние не через внутренние ощущения, а через показания устройства. Это создаёт иллюзию полной управляемости тела, снижает способность к саморегуляции и вызывает тревожность при отсутствии цифровой обратной связи.

Одним из долгосрочных рисков является **снижение физической активности и сенсорной автономии человека**. Избыточная автоматизация повседневных процессов, постоянное наличие алгоритмических подсказок и рекомендаций могут привести к деградации естественных навыков самоконтроля, концентрации и самоощущения. Человек, полностью полагающийся на внешние системы, теряет внутреннюю способность к самооценке своего состояния.

Особую опасность представляет размывание границ между телом и сетью. С развитием технологий дополненной реальности, биосенсорных систем и нейроинтерфейсов тело превращается в биологический узел информационной системы. Это приводит к появлению нового типа субъективности — «сетевого человека», чьё существование зависит от стабильности и безопасности цифровых каналов связи. В этом контексте исчезает традиционное противопоставление «естественного» и «искусственного», а само понятие телесности становится гибридным и переменным.

Для смягчения этих рисков необходимо формирование **новой цифровой этики**, ориентированной на защиту автономии личности, прозрачность алгоритмов и соблюдение принципов биологической целостности человека. Такая этика должна базироваться на трёх ключевых постулатах:

- 1. Принцип автономии человек должен сохранять контроль над своими данными и решениями, связанными с использованием технологий.
- 2. **Принцип прозрачности** алгоритмы, анализирующие и интерпретирующие данные, должны быть открыты для экспертной оценки и общественного контроля.
- 3. **Принцип сохранения человеческого достоинства** ни одна технологическая система не должна рассматривать человека лишь как источник данных или объект оптимизации.

Кроме того, важную роль играет международное правовое регулирование. Уже сегодня Европейский союз, ВОЗ и ЮНЕСКО разрабатывают глобальные стандарты обращения с биометрической информацией, требующие обязательного информированного согласия

Заключение

Носимые цифровые технологии представляют собой один из наиболее ярких примеров слияния человека и техники. Они создают новые возможности для сохранения здоровья, повышения эффективности, коммуникации и познания.

Однако их влияние выходит далеко за рамки утилитарного удобства. Эти устройства изменяют восприятие тела, сознание, социальные отношения и даже структуру идентичности человека.

Человечество вступает в эпоху «цифрового телесного существования», где границы между внутренним и внешним, частным и общественным, органическим и искусственным становятся всё более условными.

Будущее носимых технологий зависит от того, сможет ли человек сохранить гуманистические ориентиры — свободу, автономию и осознанность — в мире, где тело становится частью цифрового пространства.

Литература

- 1. UNESCO. *Ethics of Wearable Technologies and Human Autonomy*. Geneva, 2024.
- 2. Cambridge Institute of Digital Society. *Cognitive Impact of Continuous Bio-Tracking.* Cambridge, 2023.
- 3. WHO. Wearable Health Devices and Preventive Medicine. Geneva, 2023.
- 4. IEEE Standards Association. *Data Security and Human Factors in Wearable Systems.* New York, 2022.
- 5. Shusterman R. *Body Consciousness and the Digital Extension of Human Senses.* Oxford University Press, 2021.
- 6. Kurzweil R. *The Human-Machine Fusion: Future of Biological Data.* New York: Penguin Books, 2023.
- 7. Giddens A. Reflexive Modernity and Digital Identity. London: Routledge, 2022.