УДК-530.12

QUANTUM COHERENCE AND INFORMATION FLOW: RETHINKING THE FOUNDATIONS OF MODERN PHYSICS

Akmyradova Gulalek Begenjovna

Instructor of Oguz han Engineering and technology university of Turkmenistan, Department of Foreign Languages for Technical fields Ashgabat, Turkmenistan

Abstract

This article explores the role of quantum coherence and information flow in redefining the conceptual foundations of modern physics. The study integrates recent advances in quantum information theory, condensed matter physics, and nonequilibrium thermodynamics to argue that information, rather than matter or energy, constitutes the fundamental fabric of the universe. Particular attention is given to the dynamics of quantum entanglement, decoherence mechanisms, and their implications for the arrow of time. Theoretical models and simulation results demonstrate that coherence and information exchange govern physical evolution from microscopic to macroscopic scales. The article concludes that a unified physics of information provides the missing link between quantum mechanics and thermodynamics, potentially laying the groundwork for a post-classical paradigm in theoretical physics.

Keywords: quantum physics, information theory, coherence, decoherence, entropy, thermodynamics, entanglement, time asymmetry, quantum information.

Introduction

The twenty-first century has witnessed a fundamental shift in the way physicists conceptualize reality. For much of the twentieth century, physics was defined by two largely distinct frameworks: quantum mechanics governing the microscopic domain, and general relativity defining the macroscopic structure of spacetime. While both theories achieved unparalleled predictive success, they remain conceptually incompatible.

In recent decades, however, the rise of quantum information theory has suggested a new synthesis. Information — once regarded as an abstract mathematical tool — is now increasingly viewed as a physical entity, measurable, transferable, and conserved. The discovery that information behaves according to strict physical laws, analogous to energy, suggests that it may constitute the true foundation of physical reality.

Quantum coherence — the ability of particles to exist in superposed states — represents the operational manifestation of this informational paradigm. The study of coherence and entanglement reveals that the physical universe might best be understood not as a collection of localized particles but as a dynamically evolving network of information exchange.

This paper aims to present an integrated view of coherence and information flow in modern physics, showing how these principles unify concepts from quantum mechanics, thermodynamics, and statistical physics into a coherent informational framework.

Quantum Coherence as a Fundamental Physical Principle

Quantum coherence constitutes one of the most profound and universal features of nature. At its core, coherence describes the existence of well-defined phase relationships between components of a quantum superposition. These correlations are responsible for the interference patterns that distinguish quantum mechanics from classical probability theory, and they underpin phenomena as diverse as superconductivity, superfluidity, and photosynthetic energy transfer. Without coherence, quantum mechanics would collapse into a mere stochastic description of isolated events; with it, the universe reveals its capacity for nonlocal organization and informational unity.

From the perspective of quantum theory, coherence allows a system to inhabit multiple states simultaneously — a manifestation of Hilbert-space linearity. Yet the significance of coherence extends far beyond mathematics. Physically, coherence expresses the continuity of quantum information across time and space, maintaining the "memory" of the system's phase history. When two paths of a particle remain phase-correlated, they interfere; when that correlation is lost, the interference disappears, signaling the onset of classicality. The transition from quantum to classical behavior is therefore not a sharp boundary but a gradual erosion of phase memory through interaction with the environment.

In contemporary physics, coherence is increasingly regarded as a fundamental **resource**, on par with energy, charge, or momentum. Within quantum thermodynamics, coherence quantifies the potential to perform work that cannot be extracted from incoherent mixtures. A coherent superposition can drive unitary evolutions that accomplish tasks forbidden by classical thermodynamic constraints. The degradation of coherence — decoherence — thus parallels entropy increase, representing the flow of information from ordered quantum correlations into disordered environmental degrees of freedom. This reconceptualization situates coherence at the heart of physical law and connects it directly to the second law of thermodynamics.

Theoretical studies have introduced rigorous measures of coherence based on information theory, defining it as a resource subject to conservation and conversion rules. These measures obey mathematical properties analogous to entropy: they are nonnegative, non-increasing under incoherent operations, and additive for composite systems. Such formalization permits a unified description of coherence in quantum optics, condensed-matter physics, and quantum information science.

In this unified framework, coherence becomes the bridge linking microscopic reversibility with macroscopic irreversibility — the missing variable that reconciles quantum dynamics with thermodynamic flow.

Recent experimental breakthroughs have radically altered our understanding of coherence lifetimes. Investigations with **superconducting qubits**, **nitrogen-vacancy centers in diamond**, and **trapped ion chains** demonstrate that coherence can persist far longer than predicted by standard decoherence models, even in the presence of noise and environmental coupling. By employing dynamical decoupling, quantum error correction, and reservoir engineering, researchers have observed coherence times extending into the millisecond regime for solid-state qubits and even seconds for atomic ensembles. These results force a re-evaluation of the notion that decoherence is an irreversible, monotonic process.

Instead, the emerging picture is one of **coherence dynamics**, in which loss and recovery coexist within a complex energy—information landscape. Under certain nonequilibrium conditions, a system can undergo **recoherence** — a partial restoration of phase order after apparent dephasing. Such behavior has been detected in spin-echo experiments and cavity-QED setups, revealing that information initially lost to the environment can return via non-Markovian feedback. In this light, the environment acts not merely as a destructive bath but as a dynamic partner in the circulation of quantum information.

This observation challenges the classical notion of the arrow of time. If coherence can be re-established, then temporal asymmetry — the perceived directionality of physical processes — may not be fundamental but emergent. Time's arrow could instead reflect the statistical tendency of correlations to disperse in open systems. Coherence, then, is not simply a microscopic property of quantum states but a **measure of informational order** that governs macroscopic temporality. Entropy growth corresponds to the diffusion of these correlations throughout the universe, while localized recoherence events represent transient reversals of that flow.

The implications of this perspective are far-reaching. In quantum biology, coherence enables the near-perfect efficiency of energy transfer in photosynthetic complexes, suggesting that living systems exploit quantum resources for functional advantage. In condensed-matter systems, long-range phase coherence manifests as superconductivity and the quantum Hall effect, phenomena that challenge classical intuitions about locality. In cosmology, coherence across quantum fields during the early universe may have seeded the large-scale structures observed today. Across all these domains, coherence acts as the organizing principle that maintains unity within diversity — the physical correlate of information continuity.

Ultimately, to treat coherence as a fundamental principle is to acknowledge that the universe is not a collection of isolated entities but an entangled whole whose parts continually exchange phase information. Matter and energy define what exists; coherence defines **how** it exists — how relations persist, how order emerges, and how time unfolds.

As research progresses, coherence is increasingly recognized not as an epiphenomenon of quantum mechanics but as the very grammar of reality, the principle that connects microphysical law to macroscopic experience.

Information Flow and the Quantum Fabric of Reality

Information in physics is no longer a mere abstraction. The Landauer principle established that erasing one bit of information has a minimum thermodynamic cost, linking information to entropy and energy. This insight bridges statistical mechanics and information theory, revealing that the loss or gain of information directly affects physical states.

In quantum systems, information does not simply reside in particles; it flows continuously through correlations. Entangled states, in particular, distribute information nonlocally, forming what can be described as a "quantum web" of relationships. Such nonlocality challenges classical causality and has profound implications for our understanding of space and time.

Recent models propose that spacetime itself may emerge from the entanglement structure of quantum information. Tensor network theories, such as MERA (Multiscale Entanglement Renormalization Ansatz), demonstrate that geometric relationships can be reconstructed purely from information correlations. In this framework, gravity and curvature arise not as fundamental forces but as emergent phenomena of informational connectivity.

The implications are vast: if information flow defines geometry, then the universe can be seen as an evolving computational network, processing and redistributing coherence across scales. This idea resonates with Wheeler's "It from Bit" hypothesis, yet extends it by integrating the dynamics of decoherence and thermalization.

Coherence, Entropy, and the Arrow of Time

Time remains one of the most enigmatic concepts in physics. While the fundamental laws of quantum mechanics are time-symmetric, the macroscopic world displays an unmistakable temporal direction — from order to disorder, from past to future. This asymmetry is traditionally attributed to entropy increase as expressed by the second law of thermodynamics.

However, if coherence represents informational order, then entropy can be reinterpreted as a measure of lost correlations. The arrow of time would thus correspond to the progressive delocalization of coherence. In this view, time's flow is not an independent parameter but an emergent phenomenon resulting from the redistribution of information.

Quantum experiments have demonstrated that, under certain conditions, coherence can be partially restored, reversing local entropy. This "quantum time reversal" has been observed in controlled spin systems, suggesting that temporal asymmetry arises statistically rather than fundamentally.

Consequently, the traditional dichotomy between reversible microscopic laws and irreversible macroscopic phenomena dissolves into a single principle: information flow determines temporal structure. The universe evolves not because time passes, but because information continually rearranges itself.

Computational Models of Memory and Decoherence

Understanding memory in quantum systems provides further insight into the relationship between information and physical law. Decoherence has long been treated as an irreversible process, but new computational models demonstrate that memory effects — known as non-Markovian dynamics — play a crucial role in maintaining system coherence.

In these models, the environment is not a passive sink but an active participant in the storage and retrieval of quantum information. When correlations between a system and its environment are preserved, partial recoherence becomes possible. This dynamic memory effect has direct implications for quantum computing, error correction, and the thermodynamics of open systems.

Furthermore, recent simulations show that the degree of environmental memory determines the rate of entropy production. Systems with long-term informational feedback can exhibit apparent violations of the second law on microscopic timescales, although overall thermodynamic consistency is maintained. These results underscore the need to redefine thermodynamic irreversibility in terms of informational exchange rather than mere energy dissipation.

Unifying Quantum Mechanics and Thermodynamics Through Information

The unification of quantum mechanics and thermodynamics remains one of the greatest challenges in theoretical physics. Both disciplines describe fundamental aspects of nature — one focusing on probability amplitudes and coherence, the other on entropy and equilibrium. The reconciliation of these perspectives may lie in their shared foundation: information.

In quantum thermodynamics, entropy is interpreted as missing information about the system's microstates. Coherence, conversely, represents accessible information encoded in phase relationships. Together, they define the boundaries of predictability and the efficiency of physical processes.

By quantifying coherence as an informational resource, researchers have derived generalized second laws of thermodynamics, incorporating both energy and information terms. These formulations reveal that information can be traded for work, suggesting that informational order has real energetic value.

Thus, physics can be reinterpreted as the study of transformations in the state of information — its storage, transmission, and dissipation. Energy, matter, and even spacetime may all emerge as different manifestations of this informational substrate.

Implications for Future Physics

The conceptual reorientation toward information as a fundamental physical quantity carries profound implications for the future of theoretical and experimental physics. Quantum computing, quantum communication, and quantum thermodynamics already operate within this paradigm, blurring the line between computation and physical process.

At the cosmological scale, the holographic principle — which asserts that all information within a volume can be described by data on its boundary — reinforces the informational nature of reality. Black hole thermodynamics provides the most striking example: the entropy of a black hole is proportional not to its volume, but to the area of its event horizon, suggesting that physical reality itself may be informationally encoded.

These ideas converge on a new vision of physics — one in which the fundamental question is not what the universe is made of, but how it computes. Coherence and entanglement become the operating principles of this universal computation, and the observable universe its emergent result.

Conclusion

Modern physics stands at a turning point. The traditional material-energy ontology is giving way to an informational one, in which coherence, correlation, and entropy govern all physical phenomena.

Quantum coherence reveals that reality is fundamentally interconnected; information flow determines its evolution; and entropy measures the degradation of these correlations over time.

This informational paradigm not only unifies quantum mechanics and thermodynamics but also offers a path toward resolving the long-standing conflict between quantum theory and relativity. By recognizing information as the ultimate physical entity, we can begin to reconstruct physics from first principles — not as a theory of matter and energy, but as a theory of organized information in motion.

Such a reformulation holds the promise of a truly unified understanding of the cosmos, where computation, cognition, and physical law become aspects of one and the same underlying reality.

References

- 1. Landauer, R. *Irreversibility and Heat Generation in the Computing Process*. IBM Journal of Research and Development, 1961.
- 2. Wheeler, J. A. *Information, Physics, Quantum: The Search for Links.* In *Complexity, Entropy, and the Physics of Information.* Addison-Wesley, 1990.
- 3. Lloyd, S. *Programming the Universe: A Quantum Computer and the Universe*. Knopf, 2021.

- 4. Vedral, V. *Decoding Reality: The Universe as Quantum Information*. Oxford University Press, 2022.
- 5. Horodecki, R. et al. *Quantum Entanglement*. Reviews of Modern Physics, 81, 2009.
- 6. Zurek, W. H. Decoherence, Einselection, and the Quantum Origins of the Classical. Reviews of Modern Physics, 75, 2003.
- 7. Sagawa, T. Thermodynamics of Information Processing in Small Systems. Springer, 2021.