УДК-631.15

ТОЧНОЕ ЗЕМЛЕДЕЛИЕ: ИНТЕГРАЦИЯ БОЛЬШИХ ДАННЫХ, СЕНСОРНЫХ СЕТЕЙ И ИСКУССТВЕННОГО ИНТЕЛЛЕКТА ДЛЯ УСТОЙЧИВОГО УПРАВЛЕНИЯ АГРОСИСТЕМАМИ

Овульягулиев Эсет

Преподаватель, Туркменский сельскохозяйственный института г. Дашогуз Туркменистан

Омарова Махри

Студент, Туркменский сельскохозяйственный института г. Дашогуз Туркменистан

Худайкулыева Айлар

Студент, Туркменский сельскохозяйственный института г. Дашогуз Туркменистан

Джуманазарова Джемал

Студент, Туркменский сельскохозяйственный института г. Дашогуз Туркменистан

Маммедова Байрамсолтан

Студент, Туркменский сельскохозяйственный института г. Дашогуз Туркменистан

Аннотация

Данная статья посвящена всестороннему анализу точного земледелия (Precision Agriculture), рассматривая его как парадигмальный сдвиг в аграрной науке, основанный на интенсивном использовании цифровых технологий. Точное земледелие определяется как стратегия управления агрокультурами, которая использует анализ больших данных, получаемых от спутников, беспилотных летательных аппаратов (БПЛА) и наземных сенсорных сетей, для принятия дифференцированных, локализованных решений в пределах одного поля. В отличие от традиционного унифицированного подхода, точное земледелие позволяет осуществлять прецизионное внесение семян, удобрений и пестицидов в зависимости от фактических потребностей конкретного микроучастка. Статья исследует роль искусственного интеллекта (ИИ) в интерпретации гетерогенных предиктивном моделировании урожайности оптимизации данных, Подчеркивается ирригационных режимов. экономическая эффективность (снижение затрат на ресурсы) и экологическая устойчивость (минимизация загрязнения почв и водоемов) как ключевые преимущества этой технологии.

Ключевые слова: Точное земледелие, Дифференцированное управление, Сельское хозяйство 4.0, Сенсорные сети, Искусственный интеллект, Большие данные, Устойчивость, Урожайность, Агроэкосистема.

Введение

Перед глобальным сельским хозяйством стоят беспрецедентные вызовы, обусловленные ростом мирового населения, изменением климата, деградацией почв и необходимостью снижения экологического следа аграрного производства. Традиционный подход к земледелию, основанный на унифицированных нормах внесения ресурсов (удобрений, воды, средств защиты) для всего поля, доказал свою экономическую неэффективность и экологическую неустойчивость. Такой гомогенный подход не учитывает естественную гетерогенность почвенного покрова, рельефа, водного режима и микроклимата даже в пределах одного, относительно небольшого поля. Это приводит к перерасходу дорогостоящих ресурсов в одних зонах и их недостатку в других, что неизбежно снижает общую урожайность и создает избыточное загрязнение окружающей среды (вымывание нитратов в грунтовые воды).

Точное земледелие (Precision Agriculture) возникло как научно-технологический ответ на эти вызовы. Оно представляет собой революционную парадигму управления, которая использует достижения в области информационных технологий, геоинформационных систем (ГИС) и киберфизических систем для дифференциации и локализации агротехнических мероприятий. Ключевая идея заключается в том, чтобы делать нужное действие в нужное время и в нужном месте с необходимой интенсивностью. Это достигается путем постоянного мониторинга поля на микроуровне, сбора и анализа Больших данных (Big Data) и преобразования этих данных в конкретные, управляющие решения для сельскохозяйственной техники. Таким образом, точное земледелие позволяет оптимизировать каждый производственный цикл: от посева и подкормки до защиты растений и сбора урожая, обеспечивая не только экономическую выгоду за счет снижения издержек на ресурсы, но и критически важную экологическую устойчивость агроэкосистем.

Технологическая База Точного Земледелия

Реализация принципов точного земледелия опирается на сложную, многоуровневую технологическую инфраструктуру, которая интегрирует различные источники данных и средства автоматизированного управления.

Сбор Данных: Многоканальный Мониторинг Поля

Для получения полной и актуальной картины состояния агросистемы используются разнообразные, взаимодополняющие источники информации, которые работают в тандеме:

- 1. Спутниковый и Аэромониторинг (БПЛА): Использование спутников и беспилотных летательных аппаратов (дронов) позволяет регулярно получать мультиспектральные снимки высокого разрешения. показателей, как Нормализованный разностный вегетационный индекс (NDVI), позволяет оценить плотность и здоровье растительного покрова, выявить зоны стресса (недостаток влаги, болезни, дефицит питательных веществ) и оценить биомассу с высокой пространственной детализацией. оперативность обеспечивают И сверхвысокое разрешение, недостижимое для спутников.
- 2. **Наземные Сенсорные Сети (IoT):** Поле оснащается распределенными датчиками Интернета вещей (IoT), которые в режиме реального времени измеряют критические параметры: влажность и температуру почвы на разных глубинах, уровень рН, электропроводность, содержание нитратов и других питательных веществ, а также микроклиматические параметры (температура и влажность воздуха). Эти данные обеспечивают "глубинное" понимание процессов, происходящих в корнеобитаемом слое.
- 3. Исторические Данные и Геоинформационные Системы (ГИС): В ГИСсистемы интегрируются исторические карты урожайности, результаты лабораторного анализа почв, карты рельефа и данные о предшествующих культурах. Эти статические данные служат основой для зонирования поля разбивки его на однородные по потенциалу или потребностям участки.

Анализ и Принятие Решений: Роль Искусственного Интеллекта

Именно на этапе анализа и принятия решений проявляется революционное влияние **Искусственного Интеллекта (ИИ)** и **Больших данных**. Огромный, гетерогенный поток данных, поступающий с различных датчиков, невозможно обработать и интерпретировать традиционными методами.

- 1. **Предиктивное Моделирование Урожайности:** Алгоритмы машинного обучения (Machine Learning) используют исторические данные, текущие погодные условия и показания сенсоров для создания сложных моделей, способных прогнозировать конечную урожайность в каждой зоне поля с высокой точностью. Это позволяет агрономам принимать решения о ресурсах, ориентируясь не на прошлое, а на ожидаемое будущее.
- 2. Диагностика и Идентификация Стрессов: ИИ анализирует мультиспектральные изображения, выделяя аномалии, и сопоставляет их с базами данных болезней, вредителей или сорных растений. Система может автономно классифицировать тип стресса (например, отличить дефицит азота от грибкового заболевания) и формировать карты предписаний для точечного применения средств защиты растений, минимизируя общее химическое воздействие.
- 3. **Создание Карт-Заданий:** На основе анализа данных ИИ генерирует карты предписаний (task maps) цифровые файлы, которые загружаются непосредственно в бортовые компьютеры сельскохозяйственной техники.

Эти карты содержат точные инструкции о том, какое количество семян, удобрений или воды должно быть внесено в каждую конкретную точку поля (например, каждые 5-10 квадратных метров).

Дифференцированное Управление и Устойчивое Развитие Агросистем

Конечная цель точного земледелия — реализация дифференцированного управления ресурсами и достижение устойчивого развития агроэкосистем.

Прецизионное Внесение Ресурсов и Экономическая Эффективность

В отличие от традиционных, унифицированных методов, точное земледелие позволяет осуществлять прецизионное, дифференцированное внесение всех критически важных ресурсов:

- 1. Дифференцированный Посев (Variable Rate Seeding): Система автоматически меняет норму высева семян. На более плодородных или влажных участках норма увеличивается, чтобы максимизировать потенциал, в то время как на бедных или проблемных участках норма снижается, чтобы избежать неэффективного использования семян и конкуренции за ресурсы.
- 2. Переменное Внесение Удобрений (Variable Rate Fertilization): Это наиболее экономически значимый аспект. ИИ, исходя из карт потребностей и прогноза урожайности, управляет дозаторами, внося ровно столько азота, фосфора или калия, сколько необходимо конкретному участку для достижения целевой урожайности, исключая перерасход. Это приводит к существенному снижению затрат на закупку удобрений.
- 3. Оптимизированное Орошение: Применение сенсоров влажности почвы позволяет системам ирригации работать в автоматическом, адаптивном режиме. Вода подается только в те зоны и в том объеме, который требуется растениям, что критически важно в засушливых регионах и приводит к экономии до 30-50% водных ресурсов.

Экологическая Устойчивость и Социальная Ответственность

Точное земледелие имеет не только очевидный экономический, коммерческий эффект, выражающийся в снижении затрат и повышении урожайности, но и глубокий, системный экологический и социальный смысл, являясь абсолютно ключевым инструментом в обеспечении долгосрочного устойчивого развития агропромышленного комплекса. Современные общества предъявляют все более строгие требования к экологической чистоте производства продуктов питания и сохранению природных ресурсов, делая эти аспекты неотъемлемой частью социальной ответственности аграрного бизнеса.

Минимизация Химического Загрязнения Водных Ресурсов

Принцип дифференцированного и точечного внесения удобрений и пестицидов приводит к резкому и радикальному сокращению общего объема химикатов, которые попадают в почву и, следовательно, в окружающую среду. В традиционном земледелии избыток азотных и фосфорных удобрений, внесенных "по полю в среднем", неизбежно вымывается атмосферными осадками в грунтовые воды и поверхностные водоемы (реки, озера). Это является главной причиной проблемы эвтрофикации — чрезмерного обогащения водоемов биогенными элементами, которое ведет к массовому цветению сине-зеленых водорослей, дефициту кислорода и гибели водной фауны. Точное земледелие, используя карты потребностей, вносит химикаты ровно в том минимально необходимом количестве и в том месте, где они будут максимально усвоены растениями, предотвращая их миграцию в гидрологическую систему. Кроме того, снижение химической нагрузки на растения и почву повышает безопасность конечного продукта для потребителя, минимизируя остаточное содержание нитратов и пестицидов в продуктах питания, что напрямую связано с общественным здоровьем.

Сохранение Здоровья Почвы и Предотвращение Деградации

Использование точных технологий и дифференцированного анализа позволяет агрономам значительно лучше управлять практиками обработки почвы, переходя к системам нулевой или минимальной обработки почвы (No-Till или Mini-Till). Эти практики имеют решающее значение для сохранения здоровья почвенного покрова и предотвращения его деградации. Уменьшение механического воздействия на почву способствует:

- 1. Снижению Эрозии: Точный анализ рельефа и зонирование поля позволяет идентифицировать наиболее уязвимые к ветровой и водной эрозии участки. На этих участках могут применяться специализированные щадящие технологии, или же они могут быть выведены из интенсивного оборота.
- 2. **Накоплению Органического Вещества:** Отказ от вспашки и сохранение растительных остатков на поверхности **способствует накоплению органического вещества и гумуса** в верхнем слое, что улучшает плодородие, водопроницаемость и биологическую активность почвы.
- 3. Оптимизации Севооборота: ГИС-системы точного земледелия позволяют планировать севооборот не на уровне всего поля, а на уровне микрозон, выбирая оптимальную культуру для каждого участка с учетом его специфических потребностей и потенциала, что поддерживает биологическое разнообразие и способствует восстановлению почвы.

Управление Углеродным Следом и Смягчение Климатических Изменений

Эффективность точного земледелия прямо транслируется в **управление углеродным следом** и делает аграрный сектор активным участником стратегий по смягчению последствий изменения климата.

- 1. Сокращение Эмиссии Парниковых Газов: Повышение эффективности использования азотных удобрений критически важно, поскольку их избыток в почве является основным источником выбросов оксида азота (N₂O), который является мощнейшим парниковым газом (в 300 раз сильнее углекислого газа). Точечное внесение и предиктивное моделирование позволяют минимизировать эти нежелательные выбросы.
- 2. Экономия Топлива и Логистика: Применение GPS-навигации, автопилотов и оптимизация маршрутов движения сельскохозяйственной техники (исключение пропусков и перекрытий, снижение холостых прогонов) приводит к существенному снижению расхода дизельного топлива и, соответственно, сокращению выбросов CO₂ на единицу произведенной продукции.
- 3. **Карбоновое** Депонирование (Секвестрация): Активное внедрение систем минимальной обработки почвы (No-Till), поддерживаемое точными технологиями, способствует увеличению депонирования атмосферного углерода в почве, превращая пахотные земли из источника выбросов в естественный поглотитель углерода, что является одним из наиболее перспективных направлений борьбы с изменением климата.

Таким образом, точное земледелие выходит за рамки узких экономических интересов, становясь неотъемлемым элементом глобальной стратегии сохранения природных ресурсов, обеспечения экологической безопасности и выполнения социальных обязательств перед обществом и будущими поколениями.

Заключение

Точное земледелие представляет собой не просто набор технологий, а философию комплексную, интегрированную управления агросистемами, основанную на дифференциации и прецизионности. Интеграция данных, поступающих от спутников, наземных сенсоров и беспилотных аппаратов, и их последующий анализ с помощью алгоритмов искусственного интеллекта позволяют принимать оптимальные, экономически и экологически обоснованные решения на уровне микроучастков поля. Этот подход обеспечивает значительное повышение урожайности при одновременном радикальном снижении затрат на семена, удобрения и воду. В долгосрочной перспективе, точное земледелие является ключевым инструментом в обеспечении глобальной продовольственной И переходе К устойчивому, ресурсосберегающему агропроизводству, гарантируя сохранность природных ресурсов для будущих поколений.

Литература

- 1. Личчи, Г. Дж. Точное земледелие: управление производством сельскохозяйственных культур в пространстве и времени. Сельскохозяйственные науки, 2017.
- 2. Булл, Г. Умное сельское хозяйство: будущее производства продуктов питания. Агропром, 2019.
- 3. Zhang, N., Wang, M., Wang, N. Precision Agriculture—A Worldwide Perspective. Computers and Electronics in Agriculture, 2002.
- 4. Gopal, C. V. The Role of Big Data and IoT in Modern Agriculture. Journal of Advanced Agricultural Technologies, 2020.
- 5. Основы устойчивого земледелия. Под ред. В. А. Семенова. Агропресс, 2018.
- 6. Роль геоинформационных систем в управлении агроландшафтами. Сборник научных статей. Изд. РГАУ-МСХА, 2021.