УДК-631

ИСПОЛЬЗОВАНИЕ ГЕННО-МОДИФИЦИРОВАННЫХ КУЛЬТУР ДЛЯ ПОВЫШЕНИЯ УСТОЙЧИВОСТИ К ЗАСУХЕ

Смирнов Дмитрий Андреевич

аспирант, Белорусский государственный университет г. Минск. Беларусь

Аннотация

Данная статья посвящена исследованию потенциала генно-модифицированных (ГМ) культур как инструмента повышения устойчивости сельскохозяйственных растений к засухе. В условиях глобального изменения климата и участившихся периодов водного дефицита, разработка засухоустойчивых сортов становится критически важной для обеспечения продовольственной безопасности. В работе рассматриваются ключевые молекулярные механизмы, лежащие в основе реакции растений на водный стресс, а также методы генной инженерии, применяемые для интродукции или усиления этих механизмов. Анализируются результаты исследований созданию трансгенных растений, демонстрирующих повышенную выживаемость и продуктивность в условиях засухи. Обсуждаются преимущества внедрения ГМ культур, такие как снижение потерь урожая и оптимизация использования ресурсов, а также сопутствующие вызовы и перспективы дальнейшего развития биотехнологий в сельском хозяйстве.

Ключевые слова: Генно-модифицированные культуры, засухоустойчивость, биотехнология, генная инженерия, водный стресс, адаптация растений, продовольственная безопасность.

Введение

Засуха является одним из наиболее разрушительных абиотических стрессов, существенно ограничивающих продуктивность сельскохозяйственных культур во всем мире. По данным Продовольственной и сельскохозяйственной организации ООН (ФАО), водный дефицит ежегодно приводит к значительным потерям урожая и угрожает продовольственной безопасности миллионов людей, особенно в засушливых и полузасушливых регионах. В условиях продолжающегося изменения климата, характеризующегося увеличением частоты и интенсивности периодов, разработка засушливых И внедрение стратегий засухоустойчивости растений становится первоочередной задачей ДЛЯ современной агрономии и биотехнологии.

Традиционные методы селекции, хотя и эффективны, часто требуют длительного времени для выведения новых сортов и могут быть ограничены генетическим разнообразием внутри вида. В этом контексте генная инженерия предлагает мощные инструменты для целенаправленного изменения генетического материала растений, позволяя интродуцировать гены, ответственные за устойчивость к засухе, из других организмов или усиливать экспрессию собственных генов растения, участвующих в стрессовом ответе. Целью данной статьи является систематизация знаний о молекулярных механизмах засухоустойчивости и демонстрация эффективности использования генномодифицированных культур как перспективного решения для повышения адаптации растений к условиям водного дефицита.

Молекулярные механизмы устойчивости растений к засухе

Растения выработали сложные механизмы адаптации к условиям водного стресса на различных уровнях — от молекулярного до физиологического и морфологического. Понимание этих механизмов критически важно для целенаправленной генной модификации.

На молекулярном уровне реакция растений на засуху включает активацию сложных сигнальных путей, приводящих к изменению экспрессии множества генов. Основные стратегии адаптации включают:

Осморегуляция: Накопление в клетках осмотически активных веществ (осмолитов), таких как **пролин**, сахара (глюкоза, фруктоза, сахароза), сахароспирты и глицин-бетаин. Эти соединения помогают поддерживать тургор клетки и защищать клеточные структуры от повреждений при обезвоживании. Синтез пролина, например, значительно активируется в условиях засухи.

Антиоксидантная защита: Засуха вызывает образование активных форм кислорода (АФК), которые могут повредить клеточные компоненты. Растения активируют антиоксидантные системы, включающие ферменты (супероксиддисмутаза (СОД), каталаза, пероксидаза) и низкомолекулярные антиоксиданты (глутатион, аскорбат). Ген **глутатион S-трансферазы** (**AtGSTF11**), например, играет важную роль в защите от окислительного стресса.

Гормональная регуляция: Абсцизовая кислота (АБК) является ключевым растительным гормоном, регулирующим ответ на водный стресс. Она участвует в закрытии устьиц для снижения транспирации, а также в активации генов, связанных с засухоустойчивостью, и ускорении старения листьев для перераспределения ресурсов. Белки-рецепторы АБК, такие как **PYL9**, играют центральную роль в этом процессе.

Синтез стрессовых белков: В условиях засухи активируется синтез специфических белков, таких как **дегидрины**, **аквапорины** и **осмотины**. Дегидрины защищают клеточные структуры от повреждений при обезвоживании,

аквапорины регулируют транспорт воды через мембраны, а осмотины участвуют в осмотической адаптации.

Методы создания генно-модифицированных культур для засухоустойчивости

Создание ГМ культур с повышенной засухоустойчивостью включает в себя несколько ключевых этапов:

Идентификация генов-кандидатов: На основе фундаментальных исследований выявляются гены, которые кодируют белки или регулируют процессы, связанные с засухоустойчивостью. Это могут быть гены, участвующие в синтезе осмолитов, антиоксидантов, регуляции АБК-сигнального пути, или гены, влияющие на структуру корневой системы. Например, ген *cspB* из бактерии *Bacillus subtilis*, устойчивой к замерзанию, также придает растениям устойчивость к засухе.

Конструирование генетической конструкции: Выбранный ген-кандидат (или несколько генов) встраивается в вектор (обычно плазмиду), который содержит также промотор (для обеспечения экспрессии гена в растении) и маркерный ген (для отбора трансформированных клеток).

Трансформация растений: Введение генетической конструкции в клетки растения. Наиболее распространенными методами являются:

Агробактериальная трансформация: Использование бактерии *Agrobacterium tumefaciens*, которая естественным образом переносит часть своей ДНК в растительные клетки.

Биолистика (генная пушка): Введение ДНК, нанесенной на микрочастицы золота или вольфрама, непосредственно в клетки растения с помощью высокого давления.

Регенерация трансгенных растений: Из трансформированных клеток регенерируются целые растения, которые затем проверяются на наличие и экспрессию введенного гена.

Фенотипическая оценка: Полученные трансгенные растения выращиваются в контролируемых условиях засухи (например, в вегетационных сосудах с ограниченным поливом) и сравниваются с немодифицированными контрольными растениями по таким показателям, как выживаемость, биомасса, урожайность, эффективность использования воды и физиологические параметры.

Примером успешного создания ГМ культур является работа китайскоамериканских ученых, которые, изменяя клеточную концентрацию рецептора абсцизовой кислоты PYL9 в модельном растении *Arabidopsis thaliana*, добились повышения его засухоустойчивости. Аналогичные результаты были получены с трансгенным рисом, где модификация pRD29A::PYL9 увеличивала выживаемость растений в условиях засухи. Российские ученые также модифицировали табак, добавив ген AtGSTF11, что улучшило его устойчивость к низким температурам, засухе и засоленной почве. Компании BASF и Monsanto разработали сорта кукурузы, которые в полевых исследованиях при неблагоприятных засушливых условиях давали урожайность на 6,7-13,4% больше, чем обычные сорта.

Преимущества и вызовы использования ГМ культур

Преимущества:

Повышение урожайности в стрессовых условиях: ГМ культуры способны давать стабильный урожай даже при недостатке влаги, что критически важно для регионов с рискованным земледелием.

Снижение потерь: Устойчивость к засухе минимизирует потери урожая, обеспечивая большую предсказуемость и экономическую стабильность для фермеров.

Экономия ресурсов: Засухоустойчивые растения требуют меньше воды для орошения, что способствует более рациональному использованию водных ресурсов.

Расширение посевных площадей: Позволяет использовать для земледелия земли, ранее считавшиеся непригодными из-за недостатка влаги.

Ускорение селекции: Генная инженерия значительно сокращает время, необходимое для выведения новых сортов с желаемыми признаками, по сравнению с традиционной селекцией.

Снижение применения пестицидов: Часто ГМ культуры обладают комплексной устойчивостью не только к засухе, но и к вредителям или гербицидам, что снижает потребность в химических обработках.

Вызовы и дискуссия:

Несмотря на очевидные преимущества, использование ГМ культур сопряжено с рядом вызовов и вызывает общественные дискуссии:

Общественное восприятие и этические вопросы: Опасения по поводу безопасности ГМ продуктов для здоровья человека и окружающей среды, хотя многочисленные научные исследования не выявили повышенных рисков по сравнению с традиционными культурами.

Регуляторные барьеры: Строгие и часто сложные регуляторные процедуры в разных странах, замедляющие вывод новых ГМ сортов на рынок. В России, например, выращивание генно-модифицированных растений в настоящее время запрещено.

Потенциальное влияние на биоразнообразие: Риски перекрестного опыления с дикими родственниками и возможное влияние на экосистемы, хотя эти риски также активно исследуются и минимизируются.

Экономические аспекты: Вопросы, связанные с патентованием ГМ семян и доступом к ним мелких фермеров.

Дальнейшие исследования должны быть направлены на более глубокое понимание сложных взаимодействий между генами, окружающей средой и фенотипом, а также на разработку новых, более точных и безопасных методов генной инженерии. Важно также проводить широкую информационную работу для повышения осведомленности общества о научных данных, касающихся ГМ культур.

Заключение

Использование генно-модифицированных культур представляет собой одно из наиболее перспективных направлений в решении глобальной проблемы засух и устойчивого развития сельского хозяйства. биотехнологии позволяют целенаправленно модифицировать растения, усиливая их естественные механизмы адаптации к водному дефициту. Результаты многочисленных исследований демонстрируют, что ГМ культуры способны показывать повышенную выживаемость и продуктивность в способствует снижению потерь условиях, что урожая повышению продовольственной безопасности.

Несмотря на существующие вызовы, связанные с общественным восприятием и регуляторными аспектами, научный прогресс в области генной инженерии продолжает открывать новые возможности для создания высокопродуктивных и устойчивых к стрессам сельскохозяйственных растений. Дальнейшие исследования и ответственное внедрение этих технологий будут играть ключевую роль в адаптации мирового сельского хозяйства к изменяющимся климатическим условиям.

Литература

- 1. Образцова А. Созданы генно-модифицированные растения с высокой устойчивостью к засухе. N + 1. 2016. URL: https://nplus1.ru/news/2016/02/02/drought-resistance (дата обращения: 28.07.2025).
- 2. Кулуев Б. Генно-модифицированные растения лучше растут в засушливых и соленых условиях. Magister.urfu.ru. 2023. URL: https://magister.urfu.ru/ru/novosti/46479/ (дата обращения: 28.07.2025).
- 3. Курьяков И.А., Гайдученко Ю.С., Ищак Е.Р. Перспективы создания засухоустойчивых трансгенных растений. SCIENCE TIME. 2014. URL: https://cyberleninka.ru/article/n/perspektivy-sozdaniya-zasuhoustoychivyhtransgennyh-rasteniy (дата обращения: 28.07.2025).

- 4. Роспотребнадзор. Генетически модифицированные организмы: плюсы и минусы. 2024. URL: https://86.rospotrebnadzor.ru/news/geneticheski-modificzirovannyie-organizmyi-plyusyi-i-minusyi.html (дата обращения: 28.07.2025).
- 5. Кузнецов В.В., Куликов А.М. Риски, связанные с использованием генетически модифицированных (трансгенных) организмов. Журнал Российского химического общества им. Д.И. Менделеева. 2005. Т. 49. № 4. С. 70-76.