УДК-159.95

АНАЛИЗ КОГНИТИВНОЙ ДИСПЕРСИИ: ТРАНСФОРМАЦИЯ ВНИМАНИЯ И ПАМЯТИ ПОДРОСТКОВ В УСЛОВИЯХ ЭКСПОЗИЦИИ ЦИФРОВОЙ СРЕДЕ

Григорьев Максим Иванович

Преподаватель кафедры психологии развития, Белорусский государственный университет

г. Минск, Республика Беларусь

Кузьмина Дарья Николаевна

Преподаватель кафедры психологии развития, Белорусский государственный университет

г. Минск, Республика Беларусь

Аннотация

Настоящая работа посвящена всестороннему исследованию двунаправленного влияния цифровых технологий на нейрокогнитивный профиль подростков. Мы анализируем, как интенсивное и мультимодальное использование гаджетов формирует специфические паттерны внимания (например, гипервнимание вместо устойчивого внимания) и влияет на емкость рабочей памяти. Особое внимание уделяется нейробиологической подоплеке этих изменений, связанной с дофаминергической системой вознаграждения, которая закрепляет привычку к фрагментарному И поверхностному поиску информации. рассматриваются методологические подходы к оценке исполнительных функций у современных подростков и обсуждаются стратегии когнитивной гигиены, направленные на сохранение способности к глубокой обработке информации в цифровом веке.

Ключевые слова: когнитивные функции, цифровая среда, внимание, рабочая память, многозадачность, нейропластичность, дофамин, подростковый возраст, исполнительные функции.

Эволюция Психики в Эпоху Гиперссылок: Постановка Проблемы

Период подросткового развития (от 12 до 18 лет) является критически важным для созревания *префронтальной коры* — области мозга, отвечающей за высшие когнитивные функции: планирование, контроль импульсов и принятие решений. Впервые в истории человечества этот процесс созревания происходит на фоне *непрерывной экспозиции* высокоскоростным, мультимедийным и интерактивным цифровым стимулам.

Смартфоны, социальные сети и видеоигры выступают как мощнейшие факторы среды, активно перестраивающие когнитивную архитектуру молодого мозга.

Таким образом, изучение влияния *цифровой среды* переходит из области социальной критики в плоскость *фундаментальной нейропсихологии*. Наша цель — не оценить, «хороша» или «плоха» технология, а точно определить, *какие именно* когнитивные функции усиливаются, а *какие* — ослабляются в результате доминирования цифрового образа жизни. В частности, ключевой фокус сделан на анализе **внимания** и **памяти** как базовых элементов любого обучения и сложной мыслительной деятельности.

Феномен Многозадачности и Реконфигурация Внимания

Наиболее очевидным изменением, индуцированным цифровой средой, является широкое распространение *медиа-многозадачности* (*media multitasking*). Подростки регулярно переключаются между учебными материалами, чатами, музыкой и новостными лентами, что создает иллюзию продуктивности.

На самом деле, с когнитивной точки зрения, человек не выполняет несколько задач одновременно, а быстро **переключает внимание** между ними, неся при этом значительные когнитивные издержки. Исследования, проведенные в области когнитивной психологии, показывают, что интенсивные медиамультитаскеры систематически демонстрируют:

Увеличение времени на выполнение задачи из-за необходимости постоянно «перезагружать» контекст.

Снижение точности выполнения сложных, требующих сосредоточенности заданий.

Ухудшение способности к игнорированию нерелевантной информации (*ингибиторный контроль*).

Устойчивое, **целенаправленное внимание** — способность длительно фокусироваться на одном объекте — заменяется **гипервниманием** (hyperattention), которое характеризуется быстрым, но *поверхностным* перебором большого количества данных. Это является адаптацией к цифровой среде, но представляет собой серьезное препятствие для *глубокого обучения* и *критического чтения*.

Нейрохимические Основы Привыкания и Паттерны Поиска Информации

Природа цифровых платформ не случайна; она спроектирована для максимального удержания внимания через активацию дофаминергической системы вознаграждения.

Каждое новое уведомление, "лайк" или элемент *случайного вознаграждения* (например, неожиданный интересный ролик в ленте) вызывает выброс **дофамина**. Эта система *положительного подкрепления* формирует стойкую привычку к **постоянной, непредсказуемой стимуляции**. Мозг учится ожидать *мгновенного удовлетворения* и становится менее толерантным к *отпоженному вознаграждению* — то есть к необходимости долго и монотонно работать ради достижения сложной академической цели.

Этот нейрохимический паттерн напрямую влияет на поиск информации. Вместо методичного, систематического исследования темы, подростки склонны использовать стратегию поверхностного сканирования и «серфинга», быстро переходя по гиперссылкам. Формируется «цифровая амнезия» или эффект Google, когда человек полагает, что ему не нужно запоминать информацию, поскольку она всегда доступна во внешней памяти устройства. Это, в свою очередь, может привести к снижению активного использования рабочей памяти и ухудшению процессов консолидации (перевода информации из кратковременной в долговременную память).

Анализ Рисков для Исполнительных Функций

Изменения в работе внимания и памяти не остаются изолированными; они имеют каскадный эффект на **исполнительные функции** — высшие управляющие механизмы психики.

Исполнительные функции включают когнитивную гибкость (способность менять стратегии), планирование и контроль импульсов. Чрезмерное вовлечение в цифровую среду, особенно в контексте интернет-зависимости, коррелирует с определенными структурными изменениями мозге. Исследования, В использующие функциональную магнитно-резонансную томографию (фМРТ), показывают возможные снижения активности В дорсолатеральной префронтальной коре у лиц, демонстрирующих признаки патологического использования интернета. Эта зона критически важна для саморегуляции.

На поведенческом уровне это может проявляться в ухудшении академической успеваемости, проблемах с организацией времени и снижении способности к долгосрочному планированию. Развитие навыков эмпатии и социального познания также может быть затруднено, поскольку общение в виртуальных чатах не требует считывания и обработки сложных невербальных сигналов, что обедняет эмоциональный и социальный интеллект подростка.

Заключение: Разработка Стратегий Когнитивной Адаптации

Цифровая среда является неизбежной реальностью, и наша задача состоит в разработке **стратегий адаптации**, а не просто изоляции. Интенсивное использование гаджетов приводит к **когнитивной специализации**: подростки приобретают высокую *скорость реакции* и *способность к быстрому поиску*, но теряют *глубину концентрации* и *эффективность рабочей памяти*.

Для обеспечения сбалансированного когнитивного развития необходимы следующие шаги:

Формирование "Режима Глубокой Работы": Целенаправленное обучение подростков *периодам полной изоляции* от цифровых уведомлений для выполнения сложных, требующих концентрации задач.

Образовательные Инструменты: Использование цифровых технологий не для *потребления*, а для *создания* контента и *активного* обучения (кодирование, 3D-моделирование), что требует более высокого уровня **исполнительных функций**.

Гигиена Сна и Цифровой Детокс: Регламентирование использования гаджетов перед сном (из-за влияния *синего света* на мелатонин) и периодические «дни без экрана» для восстановления способности к *внутреннему сосредоточению*.

Только через осознанное управление вниманием и временем в цифровой среде возможно направить нейропластичность подросткового мозга на путь гармоничного когнитивного развития.

Литература

- 1. Ophir E., Nass C., Wagner A. D. Cognitive control in media multitaskers. // Proceedings of the National Academy of Sciences. 2009. Vol. 106. № 39. P. 15583–15587.
- 2. Carr N. The Shallows: What the Internet Is Doing to Our Brains. W. W. Norton & Company, 2010.
- 3. Григорьев М. И. Психология внимания в условиях цифровой трансформации. Минск: БГУ, 2023.
- 4. Rosen L. D. The Myth of Multitasking: How 'Doing It All' Gets Nothing Done. APA, 2008.
- 5. Uncapher M. R., Wagner A. D. Minds and brains of media multitaskers: Current findings and future directions. // Proceedings of the National Academy of Sciences. 2018. Vol. 115. № 40. P. 9869–9876.
- 6. Бабаева Ю. Д., Войскунский А. Е., Смыслова О. В. Влияние компьютера на психическое развитие детей и подростков. // Вестник МГУ. Серия 14. Психология. 2012. № 2. С. 3–15.
- 7. Small G. W., Vorgan G. iBrain: Surviving the Technological Alteration of the Modern Mind. Harper Perennial, 2008.
- 8. Логинова Е. В., Белякова Н. В. Особенности когнитивных функций у подростков с интернет-зависимостью. // Психологическая наука и образование. 2018. Т. 23. № 6. С. 55–66.