УДК-615.47

РОЛЬ БИОМЕДИЦИНСКИХ НАНОМАТЕРИАЛОВ В ЛЕЧЕНИИ РАКА: НОВЫЕ ПОДХОДЫ

Нуржанова Динара Армановна

Заведующая кафедрой наномедицины, Казахский национальный медицинский университет имени С.Д. Асфендиярова

г. Алматы, Республика Казахстан

Асылбекова Алия Канатовна

Студентка медицинского факультета, Казахский национальный медицинский университет имени С.Д. Асфендиярова

г. Алматы, Республика Казахстан

Аннотация

Развитие нанотехнологий привело к созданию нового поколения биомедицинских материалов, обладающих высокой специфичностью и биосовместимостью. В онкологии наноматериалы находят широкое применение как в диагностике, так и в лечении различных форм рака. В данной статье рассматриваются современные наноматериалы, такие как липосомы, наночастицы золота, полимерные наноструктуры, а также механизмы их доставки лекарств к опухолевым клеткам. Отдельное внимание уделяется таргетной терапии и применению наноматериалов для преодоления химиорезистентности. Представлены перспективы использования нанотехнологий в персонализированной медицине.

Ключевые слова: наноматериалы, онкология, таргетная терапия, наночастицы, лекарственная доставка, биосовместимость, персонализированное лечение, рак

Введение

Онкологические заболевания остаются одной из ведущих причин смертности во всём мире. Современные методы лечения, такие как химио- и лучевая терапия, часто сопровождаются побочными эффектами и развитием устойчивости опухолей. В последние годы интерес исследователей сосредоточен на применении нанотехнологий, которые позволяют создавать высокоэффективные и прицельные системы доставки противоопухолевых препаратов. Биомедицинские наноматериалы обеспечивают возможность направленного воздействия на опухолевые клетки, минимизируя токсическое влияние на здоровые ткани.

Классы биомедицинских наноматериалов, применяемых в онкологии

1. Липосомы

Липосомы — это сферические везикулы, состоящие из фосфолипидной мембраны. Они способны инкапсулировать как гидрофильные, так и гидрофобные препараты. Примером является препарат Doxil®, липосомальная форма доксорубицина, которая демонстрирует повышенную эффективность при сниженной кардиотоксичности.

2. Наночастицы золота

Золотые наночастицы используются в фотовозбудимых методах терапии рака, таких как фототермическая терапия. Они обладают уникальными оптическими свойствами и могут быть модифицированы лигандными молекулами для обеспечения таргетности.

3. Полимерные наноструктуры

Полимеры, такие как полилактид-гликолид (PLGA), применяются для создания устойчивых нанокапсул с пролонгированным высвобождением препарата. Их биосовместимость делает их привлекательными для клинического применения.

Механизмы доставки наноматериалов в опухолевые ткани

Доставка нанопрепаратов может осуществляться пассивно и активно.

- **Пассивная доставка** основана на эффекте повышенной проницаемости и удерживания (EPR-эффект), характерного для опухолевых сосудов.
- Активная доставка предполагает использование лигандов (антител, пептидов), специфически взаимодействующих с рецепторами опухолевых клеток, обеспечивая более точное попадание препарата.

Преодоление лекарственной резистентности с помощью нанотехнологий

Наноматериалы способны обходить механизмы многолекарственной устойчивости (MDR), благодаря:

- инкапсуляции препаратов, не узнаваемых белками-эффлюксами;
- одновременной доставке нескольких агентов (химиопрепаратов + siRNA);
- контролируемому высвобождению вещества в заданной области.

Примеры современных разработок

- Lipid nanoparticles (LNPs) используются для доставки mRNA в онкологических вакцинах.
- Carbon dots исследуются как флуоресцентные зонды для диагностики рака.
- Наногели обеспечивают доставку биомолекул и активацию в ответ на изменения рН или температуры в опухоли.

Заключение

Биомедицинские наноматериалы открывают новые горизонты в лечении онкологических заболеваний. Их высокая эффективность, способность к таргетной доставке и потенциал к персонализации терапии делают нанотехнологии ключевым направлением будущей медицины. Комплексный подход, объединяющий достижения молекулярной биологии, химии и инженерии, позволит в ближайшем будущем повысить выживаемость и качество жизни онкологических пациентов.

Список литературы

- 1. Peer D. et al. Nanocarriers as an emerging platform for cancer therapy. *Nat Nanotechnol*. 2007;2(12):751–760.
- 2. Shi J., Kantoff P.W., Wooster R., Farokhzad O.C. Cancer nanomedicine: progress, challenges and opportunities. *Nat Rev Cancer*. 2017;17(1):20–37.
- 3. Ким С.В., Исмагилова Н.А. Наноматериалы в онкологии: перспективы и ограничения. Алматы: Медицина, 2022.
- 4. Chen Y., Zhang Y., Yin Q., et al. Nanoparticle delivery of cancer drugs. *Annu Rev Pharmacol Toxicol*. 2021;61:331–354.
- 5. Глухов В.А., Роль нанотехнологий в таргетной терапии рака. *Российский онкологический журнал*, 2023; 4(29): 12–18.