
- 1 -

 НАУЧНЫЙ ЖУРНАЛ

 НАУКА И МИРОВОЗЗРЕНИЕ
 УДК-004.42

DEVELOPING SNAKE AND RACING CAR ENVIRONMENTS FOR

REINFORCEMENT LEARNING

Gulov Gurbanberdi

Student of Oguz han Engineering and Technology University of Turkmenistan

Ashgabat, Turkmenistan

Toylyyeva Ogulgozel

Student of Oguz han Engineering and Technology University of Turkmenistan

Ashgabat, Turkmenistan

Hojabalkanova Sapartach

Supervisor: Lecturer of Oguz han Engineering and Technology University of

Turkmenistan

Ashgabat, Turkmenistan

Myradov Rahman
Supervisor: Lecturer of Oguz han Engineering and Technology University of

Turkmenistan

Ashgabat, Turkmenistan

Abstract
This article explores the development of interactive environments for Reinforcement

Learning (RL) using two classic games: Snake and Racing Car. Both games offer

distinct challenges and mechanics, making them ideal candidates for testing RL

algorithms. The goal of this paper is to describe the process of designing and

implementing these environments, integrating state-of-the-art RL techniques, and

demonstrating the results of training agents to master these tasks. Key insights into the

practical applications of RL in game development are provided, highlighting how RL

agents can adapt and optimize strategies within dynamic, rule-based environments.

Keywords: Reinforcement Learning, Snake, Racing Car, AI, Game Development,

Environment Design, Machine Learning

1. Introduction

Reinforcement Learning (RL) has gained substantial popularity due to its application in

solving complex decision-making tasks. It is often applied in environments that simulate

real-world challenges or games, where an agent learns to maximize rewards through

interactions. Two such environments, Snake and Racing Car, present different levels of

complexity and require diverse approaches for effective agent training.

- 2 -

This paper provides a deep dive into the development of these environments, their

integration into RL frameworks, and the results obtained from training agents.

The Snake game, a two-dimensional arcade game, offers a relatively simple and

understandable setup, where the agent must control the snake's movements to collect

food and avoid obstacles. Despite its simplicity, it has proven to be a useful environment

for testing RL algorithms due to its discrete state and action spaces. The Racing Car

environment, on the other hand, introduces a higher level of complexity with its

continuous action space and the need for precise control over vehicle dynamics. These

contrasting environments offer valuable insights into the strengths and limitations of RL

techniques when applied to different types of tasks.

In the following sections, we will describe the detailed process of developing both Snake

and Racing Car environments. We will also discuss the integration of RL algorithms,

the challenges faced, and the learning outcomes achieved by the agents. By doing so,

this paper aims to contribute to the growing body of work in RL-based game

development and provide practical knowledge for future applications in the field.

2. Snake Environment Design

The Snake game is a classic example of a problem where agents need to learn optimal

strategies through reward maximization. The player controls a snake that grows longer

as it eats food while avoiding walls and its own tail. The goal is to maximize the snake’s

length without colliding.

2.1. State Representation

The state space of the game consists of the position of the snake, the food's location, and

the direction of movement. The state can be represented as a grid, where each cell

denotes a specific part of the snake or an empty space. In more advanced

implementations, the state can also be augmented with information such as the distance

to the food and the distance to potential obstacles, providing the agent with more context

to make better decisions. This setup allows the agent to perform more sophisticated

reasoning, improving its ability to avoid self-collisions and efficiently find food.

Moreover, the state representation can be further enhanced by including a dynamic map

of the snake's movements. For example, the environment can track the growth of the

snake and update its state accordingly, which is essential for adjusting strategies as the

snake becomes longer. This information helps the agent avoid getting trapped in corners

or running into its own body as it expands. The complexity of the state space can thus

be controlled to match the agent's capabilities, ensuring that the learning process remains

manageable.

To simplify the agent’s task, the state can also be discretized. In this case, the entire grid

is divided into smaller sections, each representing a specific state of the environment.

This discretization can make it easier for the agent to understand the world and reduce

computational complexity.

- 3 -

2.2. Action Space

The action space consists of four discrete actions: moving up, down, left, and right. The

agent’s objective is to learn which action maximizes the length of the snake while

avoiding self-collisions. This simple action space allows the agent to focus on decision-

making without being overwhelmed by too many choices, making it suitable for Q-

learning algorithms. The challenge, however, lies in the fact that the agent must learn to

adapt its strategy based on the ever-changing environment, as the snake's position and

food placement change with each move.

As the agent learns, the action space may evolve to incorporate more nuanced controls,

such as allowing diagonal movement or other specialized actions. This would add

another layer of complexity to the problem, requiring the agent to adapt even more

quickly and optimize its strategy under different conditions. Additionally, the

introduction of new actions could lead to a more efficient exploration of the state space,

helping the agent find food faster and avoid collisions more effectively.

A further extension of the action space could include a feedback loop where the agent

receives additional actions based on its previous performance. For example, the agent

could be given an option to "boost" or "slow down" under specific conditions, such as

when it is trapped or when it has gathered a significant amount of food. These added

actions would introduce more strategic thinking, requiring the agent to plan its

movements carefully and adjust its behavior dynamically.

2.3. Reward Function

The reward function assigns positive rewards when the snake eats food and negative

rewards for collisions with the wall or the snake’s body. This setup encourages the agent

to learn safe navigation while continuously seeking food. The simplicity of this reward

structure allows the agent to focus on mastering basic survival techniques before it can

develop more complex strategies for maximizing its length.

In addition to the basic reward structure, more complex reward functions could be

introduced to further guide the agent’s behavior. For instance, the agent could be

rewarded for maintaining a certain level of distance from the walls or its body,

encouraging it to avoid dangerous situations. Similarly, bonuses could be given for long

survival times, motivating the agent to prioritize safety over aggressive food collection.

These enhancements allow the agent to develop a more balanced approach, learning both

efficient exploration and risk management.

Another potential modification to the reward function could be the introduction of

negative rewards for wasting time or making repetitive moves. This would incentivize

the agent to actively search for food and avoid aimless movement. As the agent’s

performance improves, the reward function can be fine-tuned to focus more on long-

term survival rather than short-term gains, fostering the development of a more

sophisticated decision-making process.

- 4 -

3. Racing Car Environment Design

The Racing Car environment involves a car navigating a race track, where the goal is to

complete the lap in the shortest time possible. The environment's complexity lies in the

agent's need to handle velocity, steering, and road boundaries.

3.1. State Representation

The state space includes the car’s position, velocity, heading, and distance to the track

boundaries. A continuous space representation provides more detailed information to

the agent, enabling finer control over decision-making. The position and velocity

components are critical for understanding the car's movement, while the heading angle

allows the agent to plan the optimal trajectory along the track. Additionally, the distance

to the track boundaries serves as a crucial feature for preventing off-road driving and

collisions with barriers.

In advanced setups, the state representation can be enriched with visual inputs from the

environment. This could include pixel-based images or more abstract representations,

such as top-down views of the track. By incorporating these visual cues, the agent can

better understand its surroundings and make more informed decisions. This approach is

particularly useful in complex environments where the agent needs to process large

amounts of information quickly and accurately.

Furthermore, the state space can be adapted to include information about the car’s engine

performance, such as throttle and brake usage. This additional layer of detail would help

the agent optimize its acceleration and deceleration strategies, ensuring smoother

navigation of the track. By taking into account these various factors, the agent can

develop more advanced techniques for controlling its speed and direction, ultimately

improving lap times.

3.2. Action Space

The action space involves continuous steering and acceleration/deceleration inputs.

These actions are essential for the agent to adapt to the dynamic environment and

optimize its racing strategy. The continuous nature of the action space presents a greater

challenge compared to discrete environments, requiring the agent to learn fine-grained

control over its movements. This complexity makes the Racing Car environment

particularly suitable for algorithms like Proximal Policy Optimization (PPO), which can

handle continuous spaces effectively.

The inclusion of both steering and throttle actions gives the agent the ability to make

more nuanced decisions based on its current state. For example, the agent can learn to

brake when approaching sharp corners or accelerate on straights to maximize speed.

However, this freedom of action also introduces potential risks, such as overshooting

corners or losing control due to excessive speed. The challenge lies in balancing

acceleration with precise steering to maintain control while optimizing lap times.

- 5 -

In future enhancements, the action space could be expanded to include additional vehicle

parameters, such as suspension adjustments or tire pressure changes. These additional

inputs would allow the agent to fine-tune its handling characteristics, simulating a more

realistic racing environment. Such expansions would require more advanced RL

algorithms capable of processing a higher-dimensional action space, pushing the

boundaries of what can be achieved in simulated racing environments.

3.3. Reward Function

The reward function in this case is continuous, with positive rewards for speed and lap

completion. Negative rewards are assigned for off-track behavior or collisions with

barriers, encouraging the agent to balance speed with stability. To prevent the agent from

simply driving recklessly, the reward function must carefully weigh the importance of

maintaining control versus pushing for faster lap times. A well-designed reward function

ensures that the agent learns to optimize its actions for both speed and safety, which is

crucial in a racing environment.

One approach to refining the reward function is to introduce intermediate goals, such as

passing checkpoints or maintaining a certain speed for a specific period. These

intermediate rewards can motivate the agent to improve its overall racing strategy,

rewarding consistent performance rather than occasional bursts of speed. This setup also

allows the agent to experiment with different tactics, such as optimizing cornering

techniques or managing fuel consumption.

As the agent becomes more skilled, the reward function can be adjusted to introduce

new challenges, such as incorporating weather conditions or different track surfaces.

These changes would add variability to the environment, forcing the agent to adapt to

changing conditions while still striving for the best performance. This dynamic reward

structure ensures that the agent continues to learn and evolve as the racing environment

becomes more complex.

4. Implementing Reinforcement Learning

Both Snake and Racing Car environments were integrated with popular RL frameworks

such as OpenAI Gym and TensorFlow. These platforms provide pre-built functionalities

for simulating environments and training agents using algorithms like Q-learning and

Proximal Policy Optimization (PPO).

4.1. Q-learning for Snake

For the Snake game, a tabular Q-learning algorithm was applied. The agent learns by

exploring the environment, choosing actions that maximize cumulative rewards over

time. Despite the simple design, the agent was able to gradually improve its performance

by avoiding obstacles and consuming food efficiently. The agent’s learning was driven

by the principle of temporal difference, where it updated its value estimates based on

the rewards received from the environment.

- 6 -

The simplicity of Q-learning made it a perfect fit for the discrete nature of the Snake

environment. However, as the state space grows larger with longer snakes and more

complex movements, the algorithm's efficiency can decrease. One solution is to use

function approximation techniques, such as deep Q-networks (DQN), to generalize the

learning process across larger state spaces. This approach would allow the agent to

handle more complex scenarios, such as navigating tighter spaces as the snake grows.

Despite the straightforward nature of the task, the Q-learning agent faced challenges in

balancing exploration and exploitation. Initially, the agent preferred exploring random

actions, which led to suboptimal performance. However, as the agent gained more

experience, it began to exploit its knowledge by choosing actions that maximized its

reward. The balance between these two behaviors was essential for the agent to master

the Snake game.

4.2. PPO for Racing Car

For the Racing Car environment, Proximal Policy Optimization (PPO) was utilized due

to its efficiency in continuous action spaces. The agent learned to navigate the race track

by optimizing its control over the car’s speed and direction, aiming to minimize lap

times. PPO is known for its stability and effectiveness in complex, high-dimensional

action spaces, making it ideal for this environment.

One key advantage of PPO over traditional RL methods is its ability to handle large,

continuous action spaces. This was particularly beneficial for the Racing Car

environment, where precise control over the car's steering and throttle is crucial. The

agent was able to learn more nuanced driving strategies, such as adjusting its throttle at

different points on the track to maintain an optimal speed.

Despite the success of PPO in the Racing Car environment, the agent faced challenges

when dealing with extreme driving conditions, such as sharp turns or sudden changes in

the track layout. The agent’s performance was heavily influenced by the quality of the

reward function, which had to carefully balance the importance of speed and control.

Fine-tuning the reward structure played a crucial role in helping the agent optimize its

driving skills.

5. Results and Analysis

The RL agents demonstrated significant improvements over time. In the Snake game,

the agent quickly learned to avoid collisions while maximizing its length. The learning

curve showed steady progress as the agent adapted its strategy to avoid dangerous

situations and improve its food collection efficiency.

In the Racing Car environment, the agent showed increased lap times as it learned to

balance acceleration with steering. Initially, the agent struggled with maintaining

consistent lap times, frequently making errors due to poor throttle control. However,

with continued training, the agent began to recognize patterns in the track and adjust its

behavior accordingly.

- 7 -

Both agents benefited from the application of appropriate reward functions and fine-

tuned exploration strategies. The Snake agent was able to refine its movements, learning

how to optimize its trajectory to consume food while avoiding collisions. The Racing

Car agent, on the other hand, was able to improve its lap times by focusing on more

efficient navigation and optimal throttle control. These results demonstrate the potential

of RL in developing intelligent agents capable of mastering complex, dynamic

environments.

6. Conclusion

This paper highlights the importance of designing effective environments for RL agents

to develop and refine decision-making strategies. Both Snake and Racing Car

environments present unique challenges that can be adapted for various RL techniques.

By providing a detailed overview of the implementation process and results, this work

contributes to a broader understanding of how RL can be applied to game development

and agent training.

The success of the RL agents in mastering both the Snake and Racing Car games

demonstrates the versatility of RL algorithms in tackling a wide range of tasks. Although

both environments vary in complexity, they share the common goal of allowing agents

to learn through experience and maximize cumulative rewards. Future work will involve

further refinements to these environments, as well as exploring additional RL algorithms

that can handle more complex state and action spaces.

In conclusion, this paper offers valuable insights into the practical applications of RL in

game development. By developing environments that challenge agents to optimize their

strategies, this work provides a foundation for future research and applications in the

field of artificial intelligence. The ability to train agents in these environments opens up

new possibilities for developing intelligent systems that can adapt to dynamic, real-

world challenges.

7. References

1. Mnih, V., et al. (2015). Human-level control through deep reinforcement learning.

Nature.

2. Schulman, J., et al. (2017). Proximal Policy Optimization Algorithms. arXiv

preprint arXiv:1707.06347.

3. Bellman, R. (1957). Dynamic Programming. Princeton University Press.

4. Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction.

MIT Press.

