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Abstract 
This article explores the development of interactive environments for Reinforcement 

Learning (RL) using two classic games: Snake and Racing Car. Both games offer 

distinct challenges and mechanics, making them ideal candidates for testing RL 

algorithms. The goal of this paper is to describe the process of designing and 

implementing these environments, integrating state-of-the-art RL techniques, and 

demonstrating the results of training agents to master these tasks. Key insights into the 

practical applications of RL in game development are provided, highlighting how RL 

agents can adapt and optimize strategies within dynamic, rule-based environments. 
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1. Introduction 

Reinforcement Learning (RL) has gained substantial popularity due to its application in 

solving complex decision-making tasks. It is often applied in environments that simulate 

real-world challenges or games, where an agent learns to maximize rewards through 

interactions. Two such environments, Snake and Racing Car, present different levels of 

complexity and require diverse approaches for effective agent training.  
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This paper provides a deep dive into the development of these environments, their 

integration into RL frameworks, and the results obtained from training agents. 

The Snake game, a two-dimensional arcade game, offers a relatively simple and 

understandable setup, where the agent must control the snake's movements to collect 

food and avoid obstacles. Despite its simplicity, it has proven to be a useful environment 

for testing RL algorithms due to its discrete state and action spaces. The Racing Car 

environment, on the other hand, introduces a higher level of complexity with its 

continuous action space and the need for precise control over vehicle dynamics. These 

contrasting environments offer valuable insights into the strengths and limitations of RL 

techniques when applied to different types of tasks. 

In the following sections, we will describe the detailed process of developing both Snake 

and Racing Car environments. We will also discuss the integration of RL algorithms, 

the challenges faced, and the learning outcomes achieved by the agents. By doing so, 

this paper aims to contribute to the growing body of work in RL-based game 

development and provide practical knowledge for future applications in the field. 

2. Snake Environment Design 

The Snake game is a classic example of a problem where agents need to learn optimal 

strategies through reward maximization. The player controls a snake that grows longer 

as it eats food while avoiding walls and its own tail. The goal is to maximize the snake’s 

length without colliding. 

2.1. State Representation 

The state space of the game consists of the position of the snake, the food's location, and 

the direction of movement. The state can be represented as a grid, where each cell 

denotes a specific part of the snake or an empty space. In more advanced 

implementations, the state can also be augmented with information such as the distance 

to the food and the distance to potential obstacles, providing the agent with more context 

to make better decisions. This setup allows the agent to perform more sophisticated 

reasoning, improving its ability to avoid self-collisions and efficiently find food. 

Moreover, the state representation can be further enhanced by including a dynamic map 

of the snake's movements. For example, the environment can track the growth of the 

snake and update its state accordingly, which is essential for adjusting strategies as the 

snake becomes longer. This information helps the agent avoid getting trapped in corners 

or running into its own body as it expands. The complexity of the state space can thus 

be controlled to match the agent's capabilities, ensuring that the learning process remains 

manageable. 

To simplify the agent’s task, the state can also be discretized. In this case, the entire grid 

is divided into smaller sections, each representing a specific state of the environment. 

This discretization can make it easier for the agent to understand the world and reduce 

computational complexity.  
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2.2. Action Space 

The action space consists of four discrete actions: moving up, down, left, and right. The 

agent’s objective is to learn which action maximizes the length of the snake while 

avoiding self-collisions. This simple action space allows the agent to focus on decision-

making without being overwhelmed by too many choices, making it suitable for Q-

learning algorithms. The challenge, however, lies in the fact that the agent must learn to 

adapt its strategy based on the ever-changing environment, as the snake's position and 

food placement change with each move. 

As the agent learns, the action space may evolve to incorporate more nuanced controls, 

such as allowing diagonal movement or other specialized actions. This would add 

another layer of complexity to the problem, requiring the agent to adapt even more 

quickly and optimize its strategy under different conditions. Additionally, the 

introduction of new actions could lead to a more efficient exploration of the state space, 

helping the agent find food faster and avoid collisions more effectively. 

A further extension of the action space could include a feedback loop where the agent 

receives additional actions based on its previous performance. For example, the agent 

could be given an option to "boost" or "slow down" under specific conditions, such as 

when it is trapped or when it has gathered a significant amount of food. These added 

actions would introduce more strategic thinking, requiring the agent to plan its 

movements carefully and adjust its behavior dynamically. 

2.3. Reward Function 

The reward function assigns positive rewards when the snake eats food and negative 

rewards for collisions with the wall or the snake’s body. This setup encourages the agent 

to learn safe navigation while continuously seeking food. The simplicity of this reward 

structure allows the agent to focus on mastering basic survival techniques before it can 

develop more complex strategies for maximizing its length. 

In addition to the basic reward structure, more complex reward functions could be 

introduced to further guide the agent’s behavior. For instance, the agent could be 

rewarded for maintaining a certain level of distance from the walls or its body, 

encouraging it to avoid dangerous situations. Similarly, bonuses could be given for long 

survival times, motivating the agent to prioritize safety over aggressive food collection. 

These enhancements allow the agent to develop a more balanced approach, learning both 

efficient exploration and risk management. 

Another potential modification to the reward function could be the introduction of 

negative rewards for wasting time or making repetitive moves. This would incentivize 

the agent to actively search for food and avoid aimless movement. As the agent’s 

performance improves, the reward function can be fine-tuned to focus more on long-

term survival rather than short-term gains, fostering the development of a more 

sophisticated decision-making process. 
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3. Racing Car Environment Design 

The Racing Car environment involves a car navigating a race track, where the goal is to 

complete the lap in the shortest time possible. The environment's complexity lies in the 

agent's need to handle velocity, steering, and road boundaries. 

3.1. State Representation 

The state space includes the car’s position, velocity, heading, and distance to the track 

boundaries. A continuous space representation provides more detailed information to 

the agent, enabling finer control over decision-making. The position and velocity 

components are critical for understanding the car's movement, while the heading angle 

allows the agent to plan the optimal trajectory along the track. Additionally, the distance 

to the track boundaries serves as a crucial feature for preventing off-road driving and 

collisions with barriers. 

In advanced setups, the state representation can be enriched with visual inputs from the 

environment. This could include pixel-based images or more abstract representations, 

such as top-down views of the track. By incorporating these visual cues, the agent can 

better understand its surroundings and make more informed decisions. This approach is 

particularly useful in complex environments where the agent needs to process large 

amounts of information quickly and accurately. 

Furthermore, the state space can be adapted to include information about the car’s engine 

performance, such as throttle and brake usage. This additional layer of detail would help 

the agent optimize its acceleration and deceleration strategies, ensuring smoother 

navigation of the track. By taking into account these various factors, the agent can 

develop more advanced techniques for controlling its speed and direction, ultimately 

improving lap times. 

3.2. Action Space 

The action space involves continuous steering and acceleration/deceleration inputs. 

These actions are essential for the agent to adapt to the dynamic environment and 

optimize its racing strategy. The continuous nature of the action space presents a greater 

challenge compared to discrete environments, requiring the agent to learn fine-grained 

control over its movements. This complexity makes the Racing Car environment 

particularly suitable for algorithms like Proximal Policy Optimization (PPO), which can 

handle continuous spaces effectively. 

The inclusion of both steering and throttle actions gives the agent the ability to make 

more nuanced decisions based on its current state. For example, the agent can learn to 

brake when approaching sharp corners or accelerate on straights to maximize speed. 

However, this freedom of action also introduces potential risks, such as overshooting 

corners or losing control due to excessive speed. The challenge lies in balancing 

acceleration with precise steering to maintain control while optimizing lap times. 
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In future enhancements, the action space could be expanded to include additional vehicle 

parameters, such as suspension adjustments or tire pressure changes. These additional 

inputs would allow the agent to fine-tune its handling characteristics, simulating a more 

realistic racing environment. Such expansions would require more advanced RL 

algorithms capable of processing a higher-dimensional action space, pushing the 

boundaries of what can be achieved in simulated racing environments. 

3.3. Reward Function 

The reward function in this case is continuous, with positive rewards for speed and lap 

completion. Negative rewards are assigned for off-track behavior or collisions with 

barriers, encouraging the agent to balance speed with stability. To prevent the agent from 

simply driving recklessly, the reward function must carefully weigh the importance of 

maintaining control versus pushing for faster lap times. A well-designed reward function 

ensures that the agent learns to optimize its actions for both speed and safety, which is 

crucial in a racing environment. 

One approach to refining the reward function is to introduce intermediate goals, such as 

passing checkpoints or maintaining a certain speed for a specific period. These 

intermediate rewards can motivate the agent to improve its overall racing strategy, 

rewarding consistent performance rather than occasional bursts of speed. This setup also 

allows the agent to experiment with different tactics, such as optimizing cornering 

techniques or managing fuel consumption. 

As the agent becomes more skilled, the reward function can be adjusted to introduce 

new challenges, such as incorporating weather conditions or different track surfaces. 

These changes would add variability to the environment, forcing the agent to adapt to 

changing conditions while still striving for the best performance. This dynamic reward 

structure ensures that the agent continues to learn and evolve as the racing environment 

becomes more complex. 

4. Implementing Reinforcement Learning 

Both Snake and Racing Car environments were integrated with popular RL frameworks 

such as OpenAI Gym and TensorFlow. These platforms provide pre-built functionalities 

for simulating environments and training agents using algorithms like Q-learning and 

Proximal Policy Optimization (PPO). 

4.1. Q-learning for Snake 

For the Snake game, a tabular Q-learning algorithm was applied. The agent learns by 

exploring the environment, choosing actions that maximize cumulative rewards over 

time. Despite the simple design, the agent was able to gradually improve its performance 

by avoiding obstacles and consuming food efficiently. The agent’s learning was driven 

by the principle of temporal difference, where it updated its value estimates based on 

the rewards received from the environment. 
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The simplicity of Q-learning made it a perfect fit for the discrete nature of the Snake 

environment. However, as the state space grows larger with longer snakes and more 

complex movements, the algorithm's efficiency can decrease. One solution is to use 

function approximation techniques, such as deep Q-networks (DQN), to generalize the 

learning process across larger state spaces. This approach would allow the agent to 

handle more complex scenarios, such as navigating tighter spaces as the snake grows. 

Despite the straightforward nature of the task, the Q-learning agent faced challenges in 

balancing exploration and exploitation. Initially, the agent preferred exploring random 

actions, which led to suboptimal performance. However, as the agent gained more 

experience, it began to exploit its knowledge by choosing actions that maximized its 

reward. The balance between these two behaviors was essential for the agent to master 

the Snake game. 

4.2. PPO for Racing Car 

For the Racing Car environment, Proximal Policy Optimization (PPO) was utilized due 

to its efficiency in continuous action spaces. The agent learned to navigate the race track 

by optimizing its control over the car’s speed and direction, aiming to minimize lap 

times. PPO is known for its stability and effectiveness in complex, high-dimensional 

action spaces, making it ideal for this environment. 

One key advantage of PPO over traditional RL methods is its ability to handle large, 

continuous action spaces. This was particularly beneficial for the Racing Car 

environment, where precise control over the car's steering and throttle is crucial. The 

agent was able to learn more nuanced driving strategies, such as adjusting its throttle at 

different points on the track to maintain an optimal speed. 

Despite the success of PPO in the Racing Car environment, the agent faced challenges 

when dealing with extreme driving conditions, such as sharp turns or sudden changes in 

the track layout. The agent’s performance was heavily influenced by the quality of the 

reward function, which had to carefully balance the importance of speed and control. 

Fine-tuning the reward structure played a crucial role in helping the agent optimize its 

driving skills. 

5. Results and Analysis 

The RL agents demonstrated significant improvements over time. In the Snake game, 

the agent quickly learned to avoid collisions while maximizing its length. The learning 

curve showed steady progress as the agent adapted its strategy to avoid dangerous 

situations and improve its food collection efficiency. 

In the Racing Car environment, the agent showed increased lap times as it learned to 

balance acceleration with steering. Initially, the agent struggled with maintaining 

consistent lap times, frequently making errors due to poor throttle control. However, 

with continued training, the agent began to recognize patterns in the track and adjust its 

behavior accordingly. 
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Both agents benefited from the application of appropriate reward functions and fine-

tuned exploration strategies. The Snake agent was able to refine its movements, learning 

how to optimize its trajectory to consume food while avoiding collisions. The Racing 

Car agent, on the other hand, was able to improve its lap times by focusing on more 

efficient navigation and optimal throttle control. These results demonstrate the potential 

of RL in developing intelligent agents capable of mastering complex, dynamic 

environments. 

6. Conclusion 

This paper highlights the importance of designing effective environments for RL agents 

to develop and refine decision-making strategies. Both Snake and Racing Car 

environments present unique challenges that can be adapted for various RL techniques. 

By providing a detailed overview of the implementation process and results, this work 

contributes to a broader understanding of how RL can be applied to game development 

and agent training. 

The success of the RL agents in mastering both the Snake and Racing Car games 

demonstrates the versatility of RL algorithms in tackling a wide range of tasks. Although 

both environments vary in complexity, they share the common goal of allowing agents 

to learn through experience and maximize cumulative rewards. Future work will involve 

further refinements to these environments, as well as exploring additional RL algorithms 

that can handle more complex state and action spaces. 

In conclusion, this paper offers valuable insights into the practical applications of RL in 

game development. By developing environments that challenge agents to optimize their 

strategies, this work provides a foundation for future research and applications in the 

field of artificial intelligence. The ability to train agents in these environments opens up 

new possibilities for developing intelligent systems that can adapt to dynamic, real-

world challenges. 
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